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Abstract—Shortest-path queries on weighted graphs are an
essential operation in computer networks. The performance of
such algorithms has become a critical challenge in emerging
software-defined networks (SDN), since SDN controllers need
to perform a shortest-path query for every flow. Unlike classic
solutions (e.g., Dijkstra’s algorithm), high-performance shortest-
path query algorithms include two stages: preprocessing and
query answering. Despite the improved query answering time,
existing two-stage algorithms are still extremely time-consuming
in preprocessing large-scale graphs. In this paper, we propose
an efficient shortest-path query algorithm, called BBQ, which
reduces the running time of both stages via tree decomposition.
BBQ constructs a distance oracle in a bottom-top-bottom manner,
which significantly reduces preprocessing time over existing
algorithms. In addition, BBQ can answer batch queries in bulk
by traversing the decomposed tree instead of executing separate
queries. Our experimental results show that BBQ outperforms
state-of-the-art approaches by orders of magnitude for the
running time of the preprocessing stage. Meanwhile, BBQ also
offers remarkable acceleration for answering batches of queries.
As a result, SDN controllers that use BBQ can sustain 1.1–27.9
times higher connection request rates.

I. INTRODUCTION

Finding the shortest path in a weighted graph is a fundamen-

tal problem in networking (e.g., network traffic engineering

[1]) and in many other domains (e.g., navigation [2], robotic

control systems [3]). A number of well-known algorithms,

such as Dijkstra, Bellman-Ford, and Floyd-Warshall are used

in practice to provide solutions to this problem. However, with

the emergence of software-defined networks (SDN), traditional

algorithms have reached performance limitations.
In SDN, the control plane functionality of the network is

concentrated in the SDN controller, which in turn instructs

SDN switches how to forward traffic in the data plane. The

SDN controller maintains the network state, including the

connection topology of switches and the transmission costs

of links. For every connection that traverses the SDN, the

controller needs to compute a path through the SDN [4], which

translates into a shortest-path query on a weighted graph.

In large-scale SDN, controllers need to consider topologies

with thousands of switches [5] and accommodate thousands of

connection requests per second. The shortest-path computation

on the network graph is the computationally most demanding

step in this process and thus presents a critical performance

bottleneck for SDN deployment.
Classic solutions to the shortest-path query problem are

based on single-source shortest path (SSSP) or all-pairs short-
est paths (APSP) algorithms. SSSP algorithms take O(n2) time

to answer a single query (e.g., Dijkstra’s algorithm1) [6], where

n is the number of nodes in the graph. APSP algorithms (e.g.,

Floyd-Warshall’s algorithm) take constant time to answer a

single query, but spend O(n3) time to calculate all possible

shortest-path queries, and also require O(n2) space to store

a pre-computed table of the shortest paths between all pairs

of vertices [7]. The slow query time for SSSP algorithms and

the expensive space consumption for APSP algorithms are not

suitable for fast shortest-path queries on large-scale graphs.

Recently, more efficient shortest-path query algorithms have

been developed [8]–[10]. Different from conventional SSSP

and APSP algorithms, these algorithms have two stages: pre-
processing and query answering. At the preprocessing stage, a

distance oracle is pre-computed, which allows for fast retrieval

of the shortest path for any pair of vertices. After building the

distance oracle, the algorithms can then answer the shortest-

path query efficiently at the query answering stage. In this

context, the runtime space requirement of the distance oracle is

an important consideration to ensure scalability of algorithms

to large, real-world graphs.

There have been a number of studies on how to accelerate

the preprocessing and query answering time and minimize

the runtime memory space. The seminal work by Thorup and

Zwick in [10] coined the term “distance oracle” and proposed

the lower bound of the space of a distance oracle based on Paul

Erdös’ Girth Conjecture [11]. Sommer et al. in [12] proved that

for any high-girth (i.e., sparse) graphs, distance oracles with

efficient query time and constant stretch (i.e., the worst-case

accuracy for an approximate shortest-path query answering)

require super-linear space. Akiba et al. [13] presented PLL, an

exact shortest-path query algorithm based on the idea of 2-hop

cover. PLL has outstanding performance on many real-world

graphs despite not having been fully analyzed in theory [13].

Tree decomposition-based graph indexing algorithms (TEDI)

[14]–[16] have also been developed. In fact, Raghavendra et

al. in [17] showed that TEDI can significantly save the route

query time and runtime space in real SDN systems. The main

challenge of algorithms such as PLL and TEDI is that their

preprocessing stages are extremely time-consuming for large-

scale graphs (e.g., O(n2 log n) [13], [16]), which presents a

considerable performance bottleneck in practice.

In this paper, we present a new shortest-path query al-

1If implemented by a Fibonacci heap, Dijkstra’s algorithm can run in
O(m+ n logn) time, where m is the number of edges in the graph.
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gorithm for weighted graphs that can construct the distance

oracle at the preprocessing stage in a much lower time than

existing algorithms. Our algorithm, called BBQ (Bottom-top-

bottom distance oracle with Batch Queries), is also a kind

of tree decomposition-based graph indexing algorithm. BBQ

conducts the distance oracle computation by decomposing

the graph into bags, for which local APSP calculations are

performed. This approach reduces the preprocessing time for

most real-world graphs. In addition, BBQ can leverage batch

processing of multiple queries to significantly reduce the query

answering time.

The specific contributions of our work are:

• Fast construction of a distance oracle: In BBQ, the

distance oracle can be computed faster than in existing

two-stage shortest-path query algorithms. Compared with

O(n2 log n) time for existing two-stage algorithms, BBQ

requires only O(nhk2 log k + |R|2 log |R|) time at the

preprocessing stage, where h � n, k � n and |R| � n
hold for real-world graphs.

• Batch query answering: BBQ removes the computation

redundancies caused by tree path overlaps in multiple

queries. To the best of our knowledge, our paper is the

first work to optimize the running time of answering

batches of shortest-path queries.

• Evaluation of BBQ on large-scale graphs: We present re-

sults from experimental measurements that show the per-

formance of BBQ in comparison to single-stage shortest

path algorithms (Dijkstra) and state-of-the-art two-stage

algorithms (PLL and TEDI). Our results show that BBQ

can amortize the preprocessing cost with as few as 145

queries (which is 3.1%–29.7% that of PLL and TEDI).

If used in an SDN, BBQ can sustain up to 1,379,310

connection setup requests per second (compared to 500

requests per second for Dijkstra) and 3.5–33.3 times more

network updates than PLL or TEDI.

The rest of this paper is organized as follows. In Section

II, we introduce an overview of BBQ. Section III presents

the construction of distance oracle in BBQ. In Section IV,

we describe a query answering algorithm that optimizes the

time complexity of answering batches of shortest-path queries.

Section V presents the experimental results of BBQ for various

real-world graphs and provides a comparison to Dijkstra, PLL,

and TEDI. Related work is presented in Section VI. We

conclude this paper in Section VII.

II. AN OVERVIEW OF BBQ

A computer network can be viewed as an undirected graph

G = (V,E), where n = |V | and m = |E|. V is the set

of nodes (e.g., SDN switches), and E is the set of links

between nodes. In this paper, G is a weighted graph with

a weight function w : E → R
+ which maps edges to

positive valued weights. These weights represent the cost

of using transmission links (e.g., delay, hop count, etc.).

The weight of a path p =< v1, v2, . . . , vk > is defined

as w(p) =
∑k−1

i=1 w(vi, vi+1), which is the sum of all its

constituent edges. Given u, v ∈ V , if there is a path between

u and v, the shortest path of the two vertices is p with the

minimum w(p) : u
p−→ v. For convenience, we use the term

graph to denote a weighted undirected graph.

A. Principles of BBQ

BBQ decomposes the graph G into a tree TG, in which each

tree node is a subset of V . The tree nodes of TG are also called

bags. Adjacent bags may have overlaps, i.e., a vertex in V can

appear in more than one bags. For any vertex u ∈ V , all bags

that contain u constitute a connected subtree. For building the

distance oracle, we need to obtain the all-pairs shortest paths

in each bag (i.e., “local APSP”). The most time-consuming

step at the preprocessing stage is computing the local APSP

results. Thus, we design a fast local APSP method following a

bottom-top-bottom manner. Compared to the O(n2 log n) time

complexity in state-of-the-art approaches at their preprocessing

stages [15], [16], BBQ runs in O(nhk2 log k + |R|2 log |R|)
time, where h � n, k � n and |R| � n hold for real-

world graphs. Therefore, BBQ can significantly reduce the

preprocessing time.

Moreover, BBQ can answer a batch of shortest-path queries

at once. State-of-the-art shortest-path query algorithms con-

centrate on optimizing the time of answering a single shortest-

path query. For obtaining the shortest path between u, v ∈ V ,

we need to traverse the tree path between the two bags

X(u) and X(v), which are the bags containing u, v respec-

tively. With multiple queries, the tree paths corresponding to

those queries may have overlaps, which introduce redundant

computations. To accelerate the speed of answering a batch

of shortest-path queries, BBQ eliminates the computational

redundancies by traversing TG only once. Except for the

O(n) time of traversing TG, compared to the O(qk2h) time

complexity of state-of-the-art algorithms [14]–[16], BBQ only

requires O(qk log k) (k � n) time to answer q shortest-path

queries.

B. Tree Decomposition

Definition 1 (Tree Decomposition as described in [18]). A
tree decomposition of a graph G = (V,E), denoted as TG, is
a pair 〈T, χ〉, where T = 〈I, F 〉 is a tree, and χ = {Xi|i ∈
I} is a collection of subsets of V . TG satisfies the following
conditions:

1. ∪i∈IXi = V ;
2. for each edge (u, v) ∈ E, there is i ∈ I such that u, v ∈

Xi;
3. for each vertex u ∈ V , the set {p|u ∈ Xp} induces a

connected subtree.

The decomposed tree TG consists of a set of tree nodes that

are the subsets of V . These tree nodes are also called bags.

According to Condition 1, each vertex in V should appear

in at least one bag. For each edge e ∈ E, the vertices of e
should be in no less than one bag together (Condition 2). For

any vertex v ∈ V , Condition 3 requires the connectivity of the

induced subgraph of all bags containing v.
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To distinguish the nodes in TG and G, the nodes in TG are

called bags, and those in G are referred to as vertices in this

paper. We denote the root of TG as R.

The treewidth of TG is maxi∈I(|Xi|−1). For simplicity, in

our context, we denote the treewidth of TG as maxi∈I(|Xi|).
Given a graph G = (V,E), there are many kinds of TG
satisfying Definition 1. In the computer science commu-

nity, researchers mainly concentrate on those TG with small

treewidths, though computing TG with the smallest treewidth

is an NP-hard problem [19].

TEDI [15] proposes a linear-time-complexity tree-

decomposition method described in Algorithms 1 and 2.

Notwithstanding that TEDI has a theoretical O(n) treewidth

for some extreme cases (e.g., complete graphs), we observe

that the treewidth of TEDI is very small compared with n
(i.e., |R| � n) for many real-world graphs [14], [15]. Since

the real-world graphs are not extremely sparse, k � n holds.

Algorithm 1 : Graph Reduction

Input: G = (V,E), k
Output: bag stack S

1: initialize S
2: for i = 1 to k do
3: remove vertex(i)
4: if G has no more than k + 1 vertices then
5: break

6: end if
7: end for
8: R = the residual vertices in G
9: push R into S

10: return S

11: procedure remove vertex(d)
12: while TRUE do
13: if there is a vertex u with degree less than d then
14: {u1, u2, . . . , ud} is the neighbors of u
15: build a clique for C = {u1, u2, . . . , ud}
16: push {u, u1, u2, . . . , ud} into S
17: remove u and all its edges from G
18: else
19: break

20: end if
21: end while

In Algorithm 1, k is the reduction parameter that indicates

we need to remove the vertices whose degrees are ≤ k.

Algorithm 1 removes the vertices from G until the degrees

of residual vertices in G are all ≥ k. Fig. 1 shows an example

of Algorithm 1 with k = 2. Algorithm 1 begins with removing

vertex 0 with 1-degree. After removing vertex 0 and its related

edges, we build a bag {0, 4} and push this bag into the bag
stack S. At this time, we find that the degrees of residual

vertices are all > 1, and then we move to reduce the vertices

with 2-degree. We remove the vertices 1 and 2 in turn and

push {1, 2, 3} and {2, 3, 4} into S. Let the remaining vertices

Algorithm 2 : Tree Decomposition

Input: bag stack S
Output: TG

1: initialize TG
2: R = pop up the top bag from S, is the root of TG
3: while S is not empty do
4: pop up a bag Xc = {u, u1, . . . , ud} from S
5: find a bag Xf in TG s.t. Xf ∩Xc = {u1, . . . , ud}
6: add Xc into TG as the child of Xf

7: end while
8: return TG

{3, 4, 5} be the root of TG. After the graph reduction process,

Algorithm 2 builds TG shown in Fig. 2.
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Fig. 1. An example of the graph reduction process in Algorithm 1.
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Fig. 2. A tree decomposition example with k = 2.

C. The Query Answering Stage

To answer a single shortest-path query (u, v), we first need

to find the bags that contain u and v. Let X(u) be the root of

the induced tree, whose tree nodes all contain u. The tree path
between X(u) and X(v) needs to be traversed for answering

this query.

Definition 2. A tree path tp is tp = {B1, B2, . . . , Bl}, where
B1, B2, . . . , Bl are distinct bags in TG, and Bi, Bi+1 (i ∈
[l − 1]) are neighbors.

Let tp(X(u), X(v)) = {B1, B2, . . . , Bl} be the tree path

between X(u) and X(v), where B1 = X(u) and Bl = X(v).
For any given u, v ∈ V , there exists only one tp(X(u), X(v))
due to the nature of tree. We denote rdist(u, v) as the exact

distance between u and v. Assuming that Xc and Xf are the

adjacent bags on tp(X(u), X(v)) in Fig. 3, we have [15], [16]

rdist(u, v) = min{rdist(u, t) + rdist(t, v)|t ∈ Xc ∩Xf}. (1)

Hence, we can answer a single shortest-path query by a

dynamic programming method [20] according to Eq. (1). The
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Fig. 3. The data structure of BBQ’s distance oracle

time complexity of answering a single query is O(k2h), where

k is the reduction parameter selected in Algorithm 1 and h is

the height of TG. In addition, Section IV presents that BBQ

can optimize the answering time of batch queries in a different

way.

D. The Preprocessing Stage

As shown in Algorithm 3, the construction of BBQ’s

distance oracle consists of four steps: (1) graph reduction;

(2) tree decomposition; (3) the local APSP calculation; and

(4) the ancestor distance tables calculation. The steps 1

(Algorithm 1) and 2 (Algorithm 2) help BBQ in building

TG. According to Eq. (1), the dynamic programming-based

answering method requires pre-computing each bag’s local

APSP (i.e., the rdist(·, ·) value of any vertex pair in each bag)

in step 3. Furthermore, we obtain the ancestor distance table

for each non-root bag in step 4 to accelerate the answering

of batch queries. Denote IN(B) as IN(B) = B ∩ W ,

where B is an arbitrary non-root bag and W is B’s parent.

Denote U(Xe) as the set of Xe’s all non-root ancestors. BBQ

maintains an ancestor distance table dt(Xe) for each non-root

bag Xe. The table dt(Xe) maps each item (ai, bj) to the value

of rdist(ai, bj), i.e., dt(Xe)[(ai, bj)] = rdist(ai, bj), where

ai ∈ IN(Xe) and bj ∈ IN(Xt) (Xt ∈ U(Xe)).

Algorithm 3 : Computing Distance Oracle

Input: G = (V,E), k, the weight function w
Output: TG, the local APSP results, dt

1: S = Graph Reduction(G(V,E), k)

2: TG = Tree Decomposition(S)

3: dist = Local All-Pairs Shortest Paths(G, S, w)

4: dt, dist = Ancestor Distance Tables(TG, dist)
5: return TG, dist, dt

In summary, our goal at the preprocessing stage is to

establish the distance oracle according to Algorithm 3. BBQ’s

distance oracle consists of TG, the local APSP results dist
and the ancestor distance tables dt. At the query answering

stage, BBQ answers a single shortest-path query via dynamic

programming. In what follows, we show how BBQ can build

the distance oracle quickly (Section III) and accelerate the

answering time of batch shortest-path queries (Section IV).

III. FAST BUILDING OF A DISTANCE ORACLE

Algorithm 3 identifies four steps at the preprocessing stage:

graph reduction, tree decomposition, local APSP calculation,

and ancestor distance tables calculation. Since the first two

steps both run in linear time (derived in Section II), we discuss

the computational methods for the local APSP results dist and

the ancestor distance tables dt in this section.

A. The Local APSP Algorithm

A naı̈ve solution to obtain all local APSP results is to

utilize a classic APSP algorithm on G. Such a solution

requires O(n2 log n) time complexity [16]. However, due to

the characteristic of tree decomposition, many pairs of vertices

may not appear in the same bags, and thus it is not necessary to

acquire the shortest paths between all vertex pairs. Therefore,

we can design an efficient local APSP algorithm. We divide

our fast local APSP algorithm into two parts, the bottom-top
and the top-bottom processes shown in Algorithm 4.

Algorithm 4 : Local All-Pairs Shortest Paths

Input: G, bag stack S, weight function w
Output: distance function dist

1: dist =Bottom-Top Process(S, G, dist)
2: dist =Top-Bottom Process(S, dist)
3: return dist

1) The Bottom-Top Process: Recall from Section II that the

order in which the bags come into the bag stack S indicates the

generation sequence of bags. Algorithm 5 follows a bottom-

top order to update dist, which is initialized with the weight

function w.

Denote the ith (i < sn) element from the bottom of S
as Si = {bi, ui1, . . . , uil}, where bi is the ith removed vertex

according to Algorithm 1. Specifically, the top element Ssn

in S is the root R of TG. Theorem 1 shows that Algorithm 5

can partially compute the local APSP results.

Theorem 1. Assume that the shortest path p(u, v) between
u, v is p(u, v) = 〈p1, p2, . . . , pt〉, where p1 = u and pt = v.
When finishing the loop body from line 7 to line 13 in
Algorithm 5 for Si, if u, v ∈ Si and {p2, . . . , pt−1} ⊆
{b1, b2, . . . , bi} hold, dist(i)(u, v) is the exact shortest-path
distance between u, v.

Proof. Denote the exact distance of the shortest path between

u, v ∈ V as rdist(u, v). Consider a simple condition where

u, v ∈ Si and the shortest path p(u, v) is 〈u, bi, v〉 or 〈u, v〉.
It is easy to obtain dist(i)(u, v) = rdist(u, v) after finishing

the loop body from line 7 to line 13 in Algorithm 5. Next,

we investigate a general case in which the number of hops

of the shortest path is ≥ 2. W.l.o.g, we assume the shortest

path p(u, v) = 〈p1, p2, . . . , pt〉, where {p2, . . . , pt−1} ⊆
{b1, b2, . . . , bj}. Denote ψ as ψ = {p2, . . . , pt−1} and an

indexing function lb(·): lb(x) = i (x = bi), lb(x) = sn
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Algorithm 5 : Bottom-Top Process

Input: bag stack S, G, weight function w
Output: distance function dist

1: Initialize dist(0) with w
2: sn = the number of elements in S
3: for i = 1 to sn− 1 do
4: Si = {bi, ui1, . . . , uil}
5: dist(i) = dist(i−1)

6: for j = 1 to l do
7: for k = 1 to l do
8: if dist(i)(uij , uik) > dist(i)(uij , bi)+dist

(i)(bi, u
i
k)

9: dist(i)(uij , u
i
k) = dist(i)(uij , bi)+dist

(i)(bi, u
i
k)

10: end if
11: end for
12: end for
13: end for
14: return dist(sn−1)

(x ∈ R). According to the definition of the shortest path,

we have rdist(u, v) =
∑t−1

j=1 dist
(0)(pj , pj+1). Therefore, we

can calculate rdist(u, v) by dist(0) and ψ(0) = ψ ∪ {u, v}.

Suppose that px has the smaller lb(px) than those of any

other elements in ψ. After updating dist(lb(px)) for vertices

in Slb(px), we derive

rdist(px−1, px+1) = dist(0)(px−1, px) + dist(0)(px, px+1)

= dist(lb(px))(px−1, px+1).

Thus, we can remove px from ψ. We denote ψ(1) =
{p(1)1 , p

(1)
2 , . . . , p

(1)
t−1} as ψ(0) \ {px}, and rdist(u, v) can also

be computed by dist(lb(px)) and ψ(1). Then,

rdist(u, v) =
∑t−2

j=1 dist
(lb(px))(p

(1)
j , p

(1)
j+1).

Let ln(·, ·) be an index-order function in which ln(ψ, k)
indicates the lb(·) value of the element with the kth smallest

lb(·) value in ψ. Since we update dist(ln(ψ,k)) for the vertices

in all Sln(ψ,k) (k ∈ [t− 2]), we can obtain

dist(ln(ψ,t−2))(p
(t−2)
1 , p

(t−2)
2 ) =

2∑

j=1

dist(ln(ψ,t−3))(p
(t−3)
j , p

(t−3)
j+1 )

=
t−2∑

j=1

dist(ln(ψ,1))(p
(1)
j , p

(1)
j+1)

= rdist(u, v).

Therefore, this theorem is established.

During the bottom-top process, the values in dist(·)(·, ·) are

updated for each bag of S. The updating time complexity is

O(k2) for each non-root bag. Consequently, the bottom-top

process runs in O(nk2) time.

2) The Top-Bottom Process: After the bottom-top process,

we partially compute the local APSP results in the bags of TG
according to Theorem 1. Then, we need a top-bottom process

for computing the remaining local APSP results.

Algorithm 6 : Top-Bottom Process

Input: bag stack S, dist returned from Algorithm 5

Output: distance function dist
1: sn = the number of elements in S
2: dist=top down(S, dist, sn)
3: dist=top down(S, dist, sn− 1)
4: return dist

5: procedure top down(S, dist, st)
6: dist(st+1) = dist
7: for i = st downto 1 do
8: G′ = build subgraph(Si, dist(i+1))
9: dist(i) = dist(i+1)

10: Calculate the APSP for G′ with the weight

function dist(i+1)

11: Update dist(i)(u, v) for all u, v ∈ G′ with the

APSP results in line 10

12: end for
13: return dist(1)

14: procedure build subgraph(Si, dist)
15: V ′ = Si, E

′ = ∅
16: for each vertex pair (u, v) in Si do
17: if dist(u, v) < inf then
18: add edge (u, v) to E′

19: end if
20: end for
21: return G′(V ′, E′)

Algorithm 6 describes the top-bottom process that com-

pletes the APSP algorithm in each bag from the top to the

bottom of S.

Theorem 2. When Algorithm 6 is finished, the local APSP
results of all bags are complete.

Proof. In a special case, the theorem is valid if a vertex pair

u, v ∈ R, dist(sn)(u, v) is the exact shortest-path distance

between u, v according to Theorem 1.

In the general scenario, where u, v ∈ Sj and ¬(u ∈
R ∧ v ∈ R), suppose the shortest path is p(u, v) =<
p1, p2, . . . , pt >, and thus rdist(u, v) =

∑t−1
i=1 dist(pi, pi+1),

in which dist is the input parameter. Since Theorem 1

holds, the shortest-path distance between u, v can be cal-

culated by
∑l−1

i=1 dist
(j+1)(cpi, cpi+1), where cp(u, v) =

{cp1, cp2, . . . , cpl} = {pi|pi /∈ {b1, . . . , bj}}, u = cp1,

v = cpl and all elements of cp(u, v) are in p(u, v). There

are two conditions as follows:

(i) Condition 1: u = bj or v = bj
W.l.o.g, we assume that u = bj . Denote ψ as ψ =

{cp2, . . . , cpl−1}. If ψ ∈ R, this theorem obviously is correct

after finishing line 2 in Algorithm 6. Let nr be the number of

ψ’s elements that also belong to R and ns be the number of ψ’s

elements that are not in R. It is easy to see that ns+nr = l−2.

Suppose that cpa, . . . , cpa+b are all in R. When executing line
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3, we have

rdist(cpa−1, cpa+b+1) =
∑a+b

i=a−1 dist
(sn)(cpi, cpi+1). (2)

Denote ψ(0) as ψ(0) = (ψ\R)∪{u, v} = {cp(0)1 , . . . , cp
(0)
ns+2},

where cp
(0)
1 = u and cp

(0)
ns+2 = v. Since Eq. (2) holds, we

obtain rdist(u, v) =
∑ns+1

i=1 dist(sn)(cp
(0)
i , cp

(0)
i+1).

We use the same indexing function lb(.) from Theorem 1.

Suppose that cp
(0)
x has the largest lb(·) value in ψ(0). Then,

rdist(cp
(0)
x−1, cp

(0)
x+1) =

∑x
i=x−1 dist

(lb(cp(0)
x ))(cp

(0)
i , cp

(0)
i+1).

Let lm(·, ·) be an index-order function in which lm(ψ, i)
indicates the lb(·) value of the element with the ith largest

lb(·) in ψ. We define ψ(n) = ψ(n−1) \ {blm(ψ,n)}. We have

dist(lb(u))(u, v) =
∑1

i=1
dist(lm(ψ,ns))(cp

(ns)
i , cp

(ns)
i+1 )

=
∑ns

i=1
dist(lm(ψ,1))(cp

(1)
i , cp

(1)
i+1)

=
∑ns+1

i=1
dist(sn)(cp

(0)
i , cp

(0)
i+1)

= rdist(u, v).

Therefore, this theorem is true under this condition.

(ii) Condition 2: u �= bj and v �= bj
In this condition, we can find a bag Sk (k > j) that

contains u, v, bk (bk ∈ ψ). In Sk, dist(k)(u, v) can be updated

by dist(k)(u, bk) + dist(k)(bk, v). Since this proposition in

Condition 1 holds and we run the APSP algorithm for Sk, there

must be dist(k)(u, v) = rdist(u, v). Thus, the proposition is

also correct in this condition.

Therefore, Theorem 2 holds.

Although we carry out the APSP algorithm twice in each

non-root bag for the conciseness of Theorem 2’s proof, in

fact, the APSP algorithm can be run only once for each bag.

The time complexity of computing APSP is O(nk2 log k) for

all non-root bags and O(|R|2 log |R|) for the root of TG.

Therefore, Algorithm 6 runs in O(nk2 log k + |R|2 log |R|)
time.

B. Ancestor Distance Tables

We maintain an ancestor distance table dt(Xe) for each non-

root bag Xe. BBQ uses Algorithm 7 to calculate the ancestor

distance tables of all non-root bags.

As Fig. 3 shows, since Eq. (1) holds, if the values of

rdist(x, y) (x ∈ IN(X(u)), y ∈ IN(Xc)) have been

computed, we can utilize an APSP algorithm on the induced

graph G′, containing the vertices in IN(X(u)), IN(Xc) and

IN(Xf ), to obtain rdist(·, ·) values for all vertex pairs in

IN(X(u))∪IN(Xf ). Thus, the procedure Update Dt(·,·) can

compute the ancestor distance tables dt for all non-root bags

in an iterative way.

Note that the values in dt are also stored in dist according to

Algorithm 7. That means that for any non-root bag Xe, if there

is an item (ai, bj) (ai ∈ IN(Xe) and bj ∈ IN(Xt), where

Xt ∈ U(Xe)) in dt(Xe), we have dist(ai, bj) = rdist(ai, bj).

Therefore, dist returned from Algorithm 3 contains the values

of all local APSP results and the ancestor distance tables dt.

Algorithm 7 : Ancestor Distance Tables

Input: dist returned from Algorithm 4, TG
Output: dist, the ancestor distance tables dt

1: Initialize dt
2: R = the root of TG
3: Depth First Search(R)
4: return dt, dist

5: procedure Depth First Search(B)
6: if B is a non-root bag then
7: Update Dt(B,B)
8: Item = {(ai, bj)|ai ∈ IN(B), bj ∈ IN(Xt), Xt ∈

U(B)}
9: for each (x, y) in Item do

10: dt(B)[(x, y)] = dist(x, y)
11: end for
12: end if
13: for each child C of B do
14: Depth First Search(C)
15: end for

16: procedure Update Dt(B,P)
17: PU = P ’s parent

18: if PU �= R then
19: Let G′ be the induced graph of vertices in IN(B),

IN(P ) and IN(PU)
20: Compute the APSP for G′ with the weight function dist

21: Update dist according to line 20

22: P = PU
23: Update Dt(B,P)
24: end if

C. Complexity

From the above analysis, the time complexity of com-

puting the local APSP is O(nk2 log k + |R|2 log |R|) and

the local APSP algorithm spends O(|R|2 + nk2) space to

store the local APSP results. Algorithm 7 calculates the

ancestor distance tables in O(nhk2 log k) time, because each

procedure Update Dt(·, ·) takes O(hk2 log k) time and we

run this procedure O(n) times. Since each ancestor distance

table takes O(hk2) space and each non-root bag has such a

table, we need to store dt in O(nhk2) space. To sum up,

the overall time complexity of building the distance oracle is

O(nhk2 log k + |R|2 log |R|) and the total space complexity

is O(nhk2 + |R|2).

IV. ANSWERING BATCH QUERIES

Section II shows that a single shortest-path query runs in

O(k2h) time, where k is the reduction parameter and h is

the height of TG. However, we also study the problem of
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X(w)
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a
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IN(X(w’))

IN(X u’)) IN(X v’))

Fig. 4. An example of Algorithm 8

answering batch queries. Suppose that the number of shortest-

path queries is q. A straightforward solution is to run the single

query answering method q times, and thus the time complexity

is O(qk2h). However, we can do better. In this section, we

propose an O(n+qk log k) algorithm for answering q shortest-

path queries.

A. Motivation

Suppose there are two queries (w, v) and (u, v) as Fig. 4.

We first handle query (u, v). Recall from Eq. (1) that we find

rdist(u, v) = min{rdist(u, t1)+rdist(t1, t2)+rdist(t2, v)},

where t1, t2 ∈ L(X(u), X(v)) and L(X(u), X(v)) is the

lowest common ancestor (LCA) of X(u) and X(v). Of course,

Xa = L(X(u), X(v)) in Fig. 4. To obtain rdist(u, t1) and

rdist(t2, v), we need to traverse the tree paths, tp(X(u), Xa)
and tp(Xa, X(v)). When we start to answer the other query

(w, v) as in Fig. 4, tp(X(w), Xa) and tp(Xa, X(v)) need to

be traversed. We find that tp(X(u), Xa) and tp(Xa, X(v))
are traversed twice due to L(X(u), X(v)) = L(X(w), X(v)).
With the number of queries increasing, the number of such

traversal redundancies is sizable. Therefore, BBQ aims to

remove the traversal redundancies for reducing the total time

of answering batch queries.

B. Algorithm Description

Our answering algorithm for a batch of exact shortest-path

queries is shown in Algorithm 8.

Fig. 4 shows an example of Algorithm 8. First, we use

a classic LCA algorithm [21] (in line 1 of Algorithm 8) to

help us in finding q LCAs within O(n+ q) time. For a query

(u, v) ∈ Q, we suppose the LCA of X(u) and X(v) is Xa.

Since dt(X(u)), dt(X(v)) have been pre-computed at the

preprocessing stage, answering the shortest-path query (u, v)
translates into finding the (u, v)-shortest path on the induced

graph G′ that contains the vertices in {u, v}, IN(X(u)),
IN(X(u′)), IN(X(v′)) and IN(X(v)). It is worth noting

that IN(R) = ∅.

C. Complexity

Except for the O(n) time of traversing TG, the clas-

sic algorithm [21] can answer a single LCA within O(1)

Algorithm 8 : Answering A Batch of Queries

Input: TG, dt, dist, query set Q
Output: The shortest path query answer A

1: LS=Find LCA(Q)
2: for each query (u, v) in Q do
3: Xa = LS(X(u), X(v))
4: X(u′) = a child of Xa and X(u′) ∈ U(X(u))∪{X(u)}
5: X(v′) = a child of Xa and X(v′) ∈ U(X(v))∪{X(v)}
6: G′ is the induced graph of vertices in {u, v},

IN(X(u)), IN(X(u′)), IN(X(v′)) and IN(X(v))
7: Compute the shortest path between u, v on G′ with the

weight function dist
8: A[(u, v)] = dist(u, v)
9: end for

10: return A

TABLE I
DATASETS USED FOR PERFORMANCE EVALUATION

Dataset |V | |E| Network

Ark-IPv6 4,567 5,661 Autonomous Systems

SkitterAS 7,642 17,622 Autonomous Systems

Ark-IPv4 26,291 60,445 Autonomous Systems

GrQc 4,158 13,422 Collaboration

Wiki-Vote 7,066 100,736 Social

Gnutella 10,876 39,994 Internet P2P

Enron-3 33,696 18,0811 Email Communication

Slashdot 82,140 500,481 Social

time [21]. For a query (u, v) ∈ Q, since dt(X(u)) and

dt(X(v)) have been pre-computed at the preprocessing stage,

we do not have to traverse tp(X(u), L(X(u), X(v))) and

tp(L(X(u), X(v)), X(v)) for solving Eq. (1). Eq. (1) can

be solved by an O(k log k) SSSP algorithm on the induced

graph G′ that contains the vertices in {u, v}, IN(X(u)),
IN(X(u′)), IN(X(v′)) and IN(X(v)), where the size of

the vertex set of G′ is O(k). For each query (u, v) ∈ Q, we

run an SSSP algorithm on an O(k)-scale graph. Therefore, the

time complexity of Algorithm 8 is O(n+ qk log k).

V. EVALUATION

To show the effectiveness of BBQ, we compare its perfor-

mance to that of a traditional single-stage algorithm (Dijkstra)

and to that of state-of-the-art two-stage algorithms (PLL and

TEDI). While asymptotic complexity provides some insights,

it is also important to experimentally evaluate the performance

of these algorithms (e.g., though PLL’s theoretical complexity

in the worst case is high, it performs well in practice).

A. Experimental Setup and Datasets

All experiments were run on a server with a single core of

an Intel Xeon E5-2620 (2.4GHz) processor and 96 GB of main

memory. All algorithms are implemented in C++ on Windows

10.

We use real-world graphs from the networking domain

as well as from other domains for evaluation. All selected

graphs are treated as undirected, weighted graphs. Table I lists
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TABLE II
VALUE SELECTIONS OF k AND CORRESPONDING |R| AND h

Dataset k |R| h

Ark-IPv6 2 346 4

SkitterAS 8 503 7

Ark-IPv4 9 1,438 8

GrQc 8 785 13

Wiki-Vote 19 2,356 5

Gnutella 18 3,660 6

Enron-3 17 4,154 22

Slashdot 18 14,938 12

the graphs used in our experiments: (1) Ark-IPv6: an IPv6

Autonomous System (AS) network from [22]; (2) SkitterAS:

an AS network from [23]; (3) Ark-IPv4: an IPv4 AS network

from [24]; (4) GrQc: a graph created from Arxiv GR-QC

(General Relativity and Quantum Cosmology) collaboration

network [25] in which each vertex is a scientist and each edge

represents a co-author relationship; (5) Wiki-Vote: a graph of

the raw Wikipedia administrator election data [26], [27]; (6)

Gnutella: a graph created from a snapshot of the Gnutella

sharing network collected on Aug. 4, 2002 [28]; (7) Enron-3:

an email communication network [29]; (8) Slashdot: a graph

created from the Slashdot Zoo website on Feb. 21, 2009 [26] in

which the vertices represent users and the edges correspond

to friendships between users. Fig. 5 shows that the degree

distributions of these real-world graphs obey a power law.

B. Preprocessing Time and Index Space

The time complexity of BBQ is determined by parameters

k, |R|, and h. Since |R|, h are decided by parameter k, we

first investigate how k impacts |R| and h. Fig. 6 and Fig. 7

show that |R| decreases and h grows with larger k. Therefore,

we need to select k to leverage |R| and h for obtaining the

optimal preprocessing time. The values of our chosen k and

the corresponding values for |R| and h are shown in Table II.

Table III lists the preprocessing time (PT), the answering

time for a single query (QT), and the index size (IS), which

is the memory size of the distance oracle. The query time

is averaged over 1,200,000 random queries. The results in

Table III illustrate that PLL and TEDI take 3.5×–33.3× more

time for preprocessing compared to BBQ.

C. Answering Time of Batch Queries

Although PLL, TEDI, and BBQ have similar answering time

for single queries, as shown in Table III, BBQ can yield a

significant performance improvement when answering batch

shortest-path queries. Fig. 8 shows the log-log plot of the

answering time for Ark-IPv6, SkitterAS and Ark-IPv4 for

varying batch sizes. Because TEDI and PLL repeat single

queries q times, where q is the batch size, their answering

time linearly increases with batch size.

According to the analysis in Section IV, BBQ runs in

O(n + qk log k) time for batch queries. When q is not large

enough, the dominant factor of the running time is the first

term, O(n), and q has a minor contribution to the total

time consumption. When q is large, q determines the total

answering time. Fig. 8 shows the performance improvement of

BBQ. When q is large, BBQ provides an orders-of-magnitude

performance improvement over PLL and TEDI. (When q is not

large enough, single queries can be used, which are marginally

faster than PLL and TEDI as shown in Table III.) Fig. 8 also

illustrates that the performance crossover (i.e., the batch size

when the total time of BBQ’s answering algorithm for batch

queries is less than that of PLL and TEDI) is less than 10 for

these AS networks.

D. Performance in SDN Context

To explore the performance of BBQ in the context of

shortest-path finding on SDN controllers, we focus on the three

AS networks, Ark-IPv6, SkitterAS and Ark-IPv4. State-of-the-

art SDN systems, such as OpenDaylight [30] and ONOS [5],

use Dijkstra to calculate the path of a connection [30].

We first present BBQ’s ability to significantly increase the

connection request rate on an SDN controller. Table IV shows

the performance comparison for connection setup rates. If the

distance oracle has been set up, we observe that BBQ can

handle 21.3× to 5, 405.5× more connections per second than

Dijkstra and 1.1× to 27.9× more than PLL or TEDI.

If the network topology or link weights change, BBQ (as

well as PLL and TEDI) needs to rebuild the distance oracle.

Table V shows the maximum update rates. BBQ can sustain

3.5–33.3 times more network updates than PLL or TEDI.

Since Dijkstra does not use a distance oracle, we explore

how many lookups are necessary to amortize the cost of this

preprocessing. Table VI shows that after several hundreds of

shortest-path queries, the total time of BBQ is less than that of

Dijkstra. BBQ can amortize this cost more quickly than PLL or

TEDI since its distance oracle construction time is much lower.

Thus, BBQ can provide significant performance improvements

for SDN controllers in large-scale, dynamic SDN.

VI. RELATED WORK

The classic shortest-path algorithms are Dijkstra, Bellman-

Ford, Floyd-Warshall algorithms for weighted graphs and

breath-first search for unweighted graphs [31]. However, one

common assumption for these classic algorithms is that the

whole graph is stored in main memory, which implies that

both SSSP and APSP algorithms are not suitable for fast query

answering on large-scale graphs.

In recent years, many shortest-path query algorithms with

preprocessing stages have been proposed. One category of

these algorithms is the 2-hop cover-based algorithm. The au-

thors in [32] proposed an exact distance oracle with the worst-

case guarantee on the space and query answering complexity,

and they considered a 2-hop cover method in which selects

a subset L of vertices as landmark to facilitate the shortest-

path query answering. An efficient method is hierarchical
hub labeling [33], which achieves good results in road net-

works. An O(log n)-approximation algorithm for minimizing

the maximum label size of the 2-hop cover is presented by
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TABLE III
PERFORMANCE COMPARISON BETWEEN BBQ AND OTHER SHORTEST-PATH ALGORITHMS

Dataset
Dijkstra BBQ PLL TEDI

QT(μs) PT(s) QT(μs) IS(MB) PT(s) QT(μs) IS(MB) PT(s) QT(μs) IS(MB)

Ark-IPv6 2,001 0.289 12.667 0.3 0.974 13.290 0.2 9.301 12.670 0.3

SkitterAS 3,752 1.231 21.521 1.6 5.025 22.490 0.5 29.551 21.668 0.8

Ark-IPv4 15,267 12.596 73.557 8.9 65.912 78.238 2.3 411.908 74.082 5.1

GrQc 2,135 1.140 12.400 2.1 5.860 12.943 1.6 9.490 12.397 1.4

Wiki-Vote 6,433 6.492 19.840 13.1 52.535 21.587 3.3 46.130 19.810 11.1

Gnutella 5,925 10.789 30.647 29.6 343.531 36.786 22.1 66.711 30.650 26.3

Enron-3 23,853 70.313 94.005 80.3 549.746 102.152 10.4 856.461 94.012 35.5

Slashdot 72,605 540.357 214.803 433.4 6,780.010 211.882 115.2 6,122.987 214.891 371.1
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Fig. 8. The answering time of batch shortest-path queries on Ark-IPv6, SkitterAS and Ark-IPv4

TABLE IV
CONNECTION SETUP RATE ON SDN CONTROLLER (q IS THE BATCH SIZE)

Dataset Dijkstra
BBQ BBQ BBQ BBQ BBQ BBQ

PLL TEDI
(q=1) (q=10) (q=50) (q=100) (q=500) (q=1000)

Ark-IPv6 500 78,945 84,746 303,030 478,469 1,054,852 1,379,310 75,245 78,927

SkitterAS 267 46,466 44,843 171,821 255,102 456,204 536,193 44,464 46,151

Ark-IPv4 66 13,595 16,207 71,429 123,762 301,205 356,761 12,782 13,499

TABLE V
TOPOLOGY UPDATE RATE ON SDN CONTROLLER

Dataset BBQ PLL TEDI vs. PLL vs. TEDI

Ark-IPv6 3.584 1.027 0.108 3.5× 33.3×
SkitterAS 0.820 0.199 0.034 4.1× 24.2×
Ark-IPv4 0.080 0.015 0.002 5.3× 32.9×

[34]. A pruned landmark labeling algorithm was proposed in

[13], which can handle queries on some large-scale graphs,

TABLE VI
QUERIES NECESSARY TO AMORTIZE DISTANCE ORACLE CONSTRUCTION

Dataset BBQ PLL TEDI vs. PLL vs. TEDI

Ark-IPv6 145 490 4678 29.7% 3.1%

SkitterAS 330 1347 7922 24.5% 4.2%

Ark-IPv4 825 4340 27112 19.1% 3.1%

such as social and website networks. The main challenge of

2-hop cover-based algorithms is to quickly find a small 2-hop
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cover, as studied in [33].

Our work follows another direction of query algorithms,

namely tree-decomposition-based graph-indexing algorithms.

The seminal work in [15] describes a tree-decomposition-

based graph index for the original graph at the preprocess-

ing stage. This tree decomposition-based graph index facili-

tates shortest-path queries on graphs. Though finding a tree-

decomposition graph index with the optimal size is an NP-

hard problem, the tree-decomposition methods in [14], [15]

can achieve good performance with both low time complexity

and small index size for real-world graphs. The work in [14]

improved the linear tree decomposition method from [15] by

utilizing the core-fringe structure with a dense core and a tree-

like fringe of real-world graphs. One of the biggest challenges

of tree decomposition-based graph-indexing algorithms is pre-

processing local APSP results in each bag.

VII. SUMMARY AND CONCLUSION

Our work addresses the important problem of finding the

shortest path in a weighted graph. Efficient algorithms for

this problem are important in networking and many other

domains. A key challenge in tree-decomposition-based graph-

indexing algorithms for shortest-path queries is the prepro-

cessing run time of local APSP results in each node. State-

of-the-art methods are extremely time-consuming for large

graphs, which limits their scalability. Our BBQ algorithm

uses a time-efficient preprocessing method and can accelerate

the answering time through batch queries. Our experimental

results show that BBQ outperforms existing algorithms both

in terms of preprocessing time and answering time. The

performance of SDN controllers (which need to process a

shortest-path query for each connection) can be improved

significantly with our algorithm.
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