
Applying program synthesis to optimize eBPF

Qiongwen Xu

Rutgers University

qx51@cs.rutgers.edu

1 Problem statement

Extended Berkeley Packet Filter (eBPF) [8, 1] has
emerged as a powerful method to extend packet-
processing functionality in the Linux operating sys-
tem. Users can write an eBPF program and attach it
in the kernel at specific hooks (e.g., network device
driver [5]) to process packets. To ensure safe exe-
cution (e.g., crash-free) of a user-developed eBPF
program in kernel context, Linux uses an in-kernel
eBPF verifier. An eBPF program is allowed to exe-
cute only if it is proved safe by the eBPF verifier.

However, developing high-performance eBPF
programs is not easy because every optimization
must respect the eBPF verifier’s intricate safety
rules. Even small performance optimizations to
eBPF code must be meticulously hand-crafted by
expert developers. The optimization support in
compilers is inadequate. For all the benchmarks
tested in our experiments, Clang-9 produced the
identical eBPF bytecode under optimization flags
-O2 and -O3.

Our goal is that for a given loop-free eBPF pro-
gram, synthesize a semantically equivalent eBPF
program that can be accepted by the eBPF veri-
fier and has better performance in terms of program
length, throughput, and latency. An eBPF program
has multiple inputs: a register r1 pointing to packet
data; a register r10 pointing to a scratch memory,
referred to as the BPF stack; and memory shared
between user space and kernel space, in the form
of key-value maps. An eBPF program has multiple
outputs: a register r0 containing the return value,

packet, and key-value maps.
In this report, firstly we introduce and discuss

several program synthesis works (§2). Then we
present our work of applying program synthesis
to optimize eBPF programs with several domain-
specific techniques (§3).

2 Related work

2.1 Overview

In this report, program synthesis is to synthesize a
program satisfying the specification that (a) the syn-
thesized program is semantically equivalent to the
source program and (b) other requirements such as
low latency. Program synthesis problem can be for-
mulated in Eq. (1).

∃p.∀x.p(x) == psrc(x) ∧ f(p) (1)

where p is the program to be synthesized, psrc is the
source program, x is the program input, and f(p) is
the logic that the synthesized program satisfies other
requirements.

To simplify the discussion, we will first discuss
how to solve the partial problem of Eq. (1) (i.e., the
equivalence requirement) using Eq. (2).

∃p.∀x.p(x) == psrc(x) (2)

This formula is a Quantified Boolean Formula
(QBF) satisfiability problem with an existential
quantifier and a universal quantifier, which is
not efficient to be solved [14]. A technique

1



Search space

VerificationCandidate
synthesis

Counterexample

Candidate

Synthesis fails Solution

Specification

Test cases

Figure 1: Counterexample-guided inductive synthe-
sis. Candidate synthesis searches for a candidate
passing all test cases. Verification proves the equiv-
alence of the candidate and produces a counterex-
ample if the proof fails.

called counterexample-guided inductive synthesis
(CEGIS) [14] (Fig. 1) was proposed to improve
efficiency. CEGIS simplifies the formula into two
parts: candidate synthesis and verification (Fig. 1).
Candidate synthesis is driven by the test cases (i.e.,
program inputs). The initial test cases are provided
by users or randomly generated. Candidate synthe-
sis tries to synthesize a candidate which passes all
existing test cases (Eq. (3)).

∃p.∀x ∈ tc.p(x) == psrc(x) (3)

where tc is test cases. Then, the verification does
an equivalence check of the candidate by checking
whether there is an input (i.e., counterexample) that
makes the candidate and the source program pro-
duce different outputs (Eq. (4)).

∃x.p(x)! = psrc(x) (4)

If Eq. (4) is unsatisfiable, the candidate is the solu-
tion to the program synthesis problem. Otherwise, a
counterexample will be generated and added in the
test cases. The counterexample can help the can-
didate synthesizer avoids synthesizing a program
that has a similar behavior to the current candidate.
In the candidate synthesis, if time is exhausted or
no more candidates can be generated, the synthesis
fails.

Generally, verification (i.e., Eq. (4)) is formu-
lated as a query which can be solved by the off-
the-shelf SAT/SMT solver. The solver will give a
counterexample if the query is satisfiable. There are

several different approaches to synthesizing candi-
dates. In this report, we will describe (a) stochastic
synthesis which utilizes Markov Chain Monte Carlo
(MCMC) method to do a stochastic search (§2.2),
(b) enumerative synthesis with pruning algorithms
(§2.3), (c) constraint-based synthesis which lever-
ages off-the-shelf SAT/SMT solvers to search for
a candidate (§2.4), and (d) others (§2.5). Most of
these approaches utilize test cases to quickly prune
unequal programs which cannot be candidates, re-
ducing the number of time-consuming queries in the
verification.

2.2 Stochastic synthesis

Stochastic synthesis was proposed in [12], which
uses a stochastic search technique known as MCMC
method to synthesize programs. In §2.2.1, we pro-
vide an overview of the basic approach, and in
§2.2.2, we show how to extend this to loops.

2.2.1 STOKE

STOKE [12] is a framework which uses stochastic
search for loop-free x86 instructions superoptimiza-
tion [7]. The optimized program is semantically
equivalent to the source program and has lower la-
tency.

The stochastic search in STOKE is guided by a
cost function c(.) which reflects the correctness and
the estimated latency, i.e.,

c = we ∗ cerr + wp ∗ cperf (5)

where we is the weight of error cost cerr, wp is
the weight of performance (i.e., latency) cost cperf .
Thus, the program optimization problem can be
converted to searching for a program with the mini-
mal cost.

In general, the cost function is complex and
highly irregular. STOKE utilizes MCMC to find out
a program with a low cost (near-optimal) in a rea-
sonable time. One property of MCMC is that in the
limit of sampling time, the frequency of the same
point sampled by the MCMC method is in direct
proportion to a probability density function value.
Hence, programs with lower costs are more likely to

2



random
move

Test
cases Interpreter

counter
example

Proposal Current
program

Equal
verifier

Perf cost
computation

Overall cost
computation

costerr

costperf

is_equalfail

pass

Cost computation

Decide next
program

Source
program

Optimized
program

Search loop

cost

pcurr

Figure 2: An overview of STOKE

be sampled by designing a probability density func-
tion that is inversely related to the cost function. The
optimized program is the program with zero error
cost and minimal performance cost among all sam-
pled programs.

Fig. 2 is an overview of STOKE using MCMC.
The search loop starts from the source program, per-
forms the stochastic search for a configurable time,
and produces an optimized program. Each search
loop iteration includes the following steps, noting
that the first current program is the source program.

1. Assuming the current program is P , perform
a random move to get a new proposal P ∗. A
random move is a random modification to the
current program, such as modifying an instruc-
tion move r1 0 to move r1 2.

2. Calculate the acceptance criteria α of moving
from the current program P to the proposal P ∗

using Eq. (6), where c(.) is the cost function,
S is the source program. β is a configurable
constant. Usually, it is a small number like 2.

α(P → P ∗;S) = min(1,
e−β·c(P ∗;S)

e−β·c(P ;S)
) (6)

3. Perform a uniform(0,1) sample to get a random
value v.

4. Decide the next program by comparing v with
α. If v is smaller than α, the new proposal P ∗

will be accepted as the next current program.

Otherwise, the next current program is P . Ac-
cording to Eq. (6), if the proposal has a smaller
cost than the current program, the proposal will
be accepted. Otherwise, it may be rejected.

The cost function is a combination of the correct-
ness cost and the performance cost. Intuitively, the
correctness cost is either 0 if the proposal is equal
to the source program or 1 if the proposal is un-
equal. However, the 0/1 output makes the search
space uneven. Instead, STOKE utilizes test cases to
measure the distance (e.g., the Hamming distance)
between outputs of the proposal and the source pro-
gram. In addition, the test cases also reduce the
equivalence verification time by reducing the solver
queries (CEGIS discussion in §2.1). The perfor-
mance cost is estimated by the sum of the average
latencies of each instruction, i.e.,

cperf (P ;S) =
∑

inst∈P
LATENCY (inst)

−
∑

inst∈S
LATENCY (inst)

(7)

There are three key aspects in MCMC sampling
to increase the probability of finding a better pro-
gram: the starting program, moves, and the cost
function. In practice, we run the search for a rea-
sonable time. The search can not sample all possi-
ble programs (i.e., it’s an incomplete search). Hence
there is no guarantee that the search can find the op-
timal program. If the starting program is “close”
to the optimal program, it is more likely that the
search can find the best program. The transform-
ing path from the starting program to the optimal
program depends on the move and whether to ac-
cept this move based on the cost function. This
work mentions that it’s more likely to get the best
results when the moves contain both minor and ma-
jor changes. Minor changes such as modifying an
operand can help find out the local optimal, while
major changes like swapping two random instruc-
tions can help the search jump from the local opti-
mal area to the global optimal region.

3



Figure 3: Search with two-stage verification using
bounded verifier and sound verifier.

2.2.2 Synthesizing programs with loops

Churchill et al [2] proposed a work on how to syn-
thesize loops based on STOKE.

To support loop synthesis, we need a way to
automatically prove the equivalence of two loops.
In general, we need to manually construct loop
invariants to prove the equivalence of two pro-
grams with loops [16]. A previous work [13] pro-
posed data-driven equivalence checking (DDEC)
to do the equivalence check automatically. How-
ever, DDEC cannot generate counterexamples from
failed proofs, making it uneasy to use test cases
in STOKE to quickly detect most unequal rewrites.
Manually generating test cases is an option. How-
ever, as a consequence, the efficiency of the stochas-
tic search heavily relies on the quality of human-
provided test cases. If people miss some crucial cor-
ner cases, DDEC which involves time-consuming
queries will be invoked more frequently.

The solution proposed in this work is to utilize a
two-stage verification consisting of a bounded veri-
fier and a sound verifier (Fig. 3).

In the first stage, a bounded verifier partially
proves equivalence by checking when there are at
most k iterations for each loop, whether the proposal
is semantically equivalent to the source program.
The bound parameter k is configured by users. If
the proof fails, a counterexample will be generated.
Otherwise, this proposal will be sent to the second
stage and checked the equivalence for all inputs by
the sound verifier.

The key idea of the partial proof in the bounded
verifier is to reconstruct loop-free programs by un-
rolling loops based on k, and then to perform
the equivalence check of programs without loops.

Firstly, decompose the program into a set of ba-
sic blocks. Secondly, based on the bound param-
eter k, construct paths (i.e., programs with unrolled
loops) where basic blocks in each loop repeat for
at most k times, and corresponding path condi-
tions. Thirdly, formulate program logic on each
path: outputi =

∧
j instj(sj), where instj is the

jth instruction on the pathi and sj is the initial
state for pathi. By combining each path formula
for pathi and the corresponding path condition pci,
we can get the program logic p when iterations are at
most k times: p =

∧
i pci → (output == outputi),

where output is program’s output. Finally, we can
prove whether the program logic of proposal P ∗

is equivalent to the source program S by lever-
aging an SMT solver to check whether the query
pP ∗ ∧ pS ∧ outputP ∗ ! = outputS is unsatisfiable.

The sound verifier is based on DDEC [13]. First,
DDEC utilizes test cases to guess a simulation rela-
tion which consists of cutpoints and invariants be-
tween the proposal and the source program. A cut-
point is a pair of program points where one is from
the proposal, the other is from the source program.
Each point is associated with an invariant, i.e., the
state relationship between two programs. The cut-
points cut each program into some loop-free frag-
ments. Second, DDEC utilizes test cases to infer
a set of corresponding code paths where two pro-
grams start from the same cutpoint and end at the
same cutpoint. Third, DDEC formulates a relation-
ship between the input and output states for each
corresponding code path. Finally, DDEC constructs
a query to be solved by an SMT solver: for every
corresponding code path, if two program starts from
the same states, two programs will end at the same
states. The sound verifier extends DDEC to improve
efficiency and adds support to memory instructions
for precision.

2.2.3 Discussion

We use STOKE framework to synthesize eBPF pro-
grams. There are two reasons. First, STOKE can
easily generalize to the eBPF domain by providing
the cost function of the specification: safety, per-
formance, and correctness. Second, eBPF has a

4



large and high dimensional program search space,
since eBPF supports more than 100 opcodes, 64-
bit operands, and 16-bit memory and jump offsets.
STOKE can quickly explore a large and irregular
search space by sampling programs with lower costs
more frequently.

eBPF supports bounded loops. The program
length (hence, the loop length and the maximum
loop iterations) is bounded by the number of in-
structions on each path in a program. In the mod-
ern kernel, the maximum number of all path instruc-
tions is one million. To support the bounded loops
of eBPF synthesis in future work, we can refer to
the two-stage verification model.

2.3 Enumerative synthesis

Enumerative algorithms search for a semantically
equivalent program satisfying the specification by
enumerating all possible programs from the small-
est programs to larger programs. Intuitively, this
method can find the optimal program (e.g., with
the smallest program length). However, the search
space containing all possible programs grows ex-
ponentially with an increasing number of opcodes,
operands, instructions, and so on. Hence, it is cru-
cial to design a pruning algorithm which can dra-
matically reduce the search space.

2.3.1 LENS

To speed up superoptimization, Phothilimthana et
al [10] proposed a pruning algorithm LENS to ac-
celerate synthesizing loop-free and branch-free pro-
grams. LENS solves the inefficiencies in the prior
equivalence-class-based enumerative synthesis by
selectively refining the search space where pro-
grams pass all previous test cases (i.e., programs
have the potential to be optimal).

LENS is based on equivalence class pruning tech-
nology. Equivalence-class-based work groups pro-
grams in the search space according to their behav-
iors on the test cases. We will use Fig. 4 as an
example. Assume pre is the program prefix from
the initial state s to the intermediate state u. The
search algorithm looks for a program postfix post

1 2 3 4

… …
t1

s1 u1 … …

…
<4,0>

<4,0>

<4,4>

<4,-4>

<0,->

<3,->

<1,->

1 test case

… …
t2

s2

u2 … …

…
<4,0>
<1,2>

<4,0>
<1,2>

<4,4>
<1,1>

<4,-4>
<1,-1>

<0,->
<0,->

<0,->
<2,->

<1,->
<3,->2 test cases

restart

<3,->
<1,->

<3,->
<3,->

…
d2
<4,-4>
<1,-4>

a1

b1

a2

b2

inst1 inst2

inst2 inst3

inst1
inst2

inst2 inst3

Figure 4: The existing equivalence class pruning
strategy.

that can convert u to t, where t is the final state
of the source program for the test case(s). If it is
proved that there is no such post, all program pre-
fixes in the same equivalence class (i.e., the prefixes
that convert the initial state to the same intermedi-
ate state for the test case(s)) can be pruned away.
For example, in Fig. 4, we figure out that program
prefix p1 (⟨inst1, inst2⟩) cannot reach target state
t1. After proving that p2 (⟨inst2, inst3⟩) reaches
u1, we can prune away programs with prefix p2, be-
cause p2 and p1 have the same intermediate state u1
(i.e., they are in the same equivalence class).

There are two inefficiencies in this pruning algo-
rithm. First, if an unequal program passes all ex-
isting test cases, a counterexample will be produced
from an SMT solver. To handle this new test case,
the search restarts but it does not utilize the informa-
tion that some programs are pruned away according
to the previous test cases. In Fig. 4, the search re-
visits p1 and p2 on the second test case. Second, the
algorithm uses more test cases than necessary. In
Fig. 4, p1 and p2 behave the same on the first test
case but differ on the second one. If p1 fails the first
test case, p2 can be pruned away. However, since p1
and p2 have the different behaviors on the second
test case (hence, in different equivalence classes),
p2 cannot be pruned away. The paths from d2 to the
finial states t2 are visited.

5



LENS was designed to address these two ineffi-
ciencies. When the search processes a new test case,
LENS further refines the selective search space
where the programs pass all previous test cases.
This method rapidly prunes away all programs that
fail any previous test cases. For example, p1 and p2
will be removed from the search space before start-
ing the search with two test cases.

Fig. 5 shows an example of LENS algorithm. In
step 1, LENS checks whether the leaf node s1 can
reach the final node t1 within one instruction. If it is
infeasible, LENS expands the graph by adding one
instruction to each leaf node (i.e., s1), and check
whether any new leaf node can reach t1 with one
instruction (step 2). With the expansion in step 2,
all leaf nodes cannot reach t1 in one instruction,
LENS further expands the leaf nodes (step 3). Af-
ter this expansion, b2 is able to reach t1 by adding
one more instruction. This means that programs
progst1 with the prefix reaching state b2 and post-
fix inst1 can pass the first test case. Then we need
to further check whether progst1 can pass the sec-
ond test case. Before checking, LENS refines the
search space by only keeping progst1 (step 4). Then
in step 5, LENS builds the new graph by interpret-
ing progst1 with the second test case and further
refines the search space for the next test case in step
6. Once there is a program passing all the existing
test cases, it will be sent to the verifier to do the for-
mal equivalence proof. The verifier will produce a
counterexample if the proof fails.

2.3.2 Dataflow-based pruning

Souper [11] synthesizes peephole optimization rules
(e.g., optimizing x ∗ 4 to x ≪ 2) by enumerat-
ing a large number of candidates. These candidates
may contain symbolic constants or Holes. A Hole
represents an arbitrary DAG of not-yet-enumerated
instructions. The search space includes both con-
crete values and partially symbolic candidates (from
Holes). Souper starts with a Hole, expands the
Hole in a tree structure until the solution is found
or reaches a certain depth.

Recent work by Mukherjee et al [9] shows how
to improve Souper by leveraging dataflow to refine

1

t1

s1

<4,0>

1st test case 2 3

<1,->

1

t1

s1

<4,0>

1st test case 2 3

<1,->

a1

b1

c1

1

t1

s1

<4,0>

1st test case 2 3

<1,->

a1

b1

c1

a2

b2

b3

d2

1

t1

s1

<4,0>

1st test case 2 3

<1,->

a1

b1
b2

1

t2

s2

<1,2>

2nd test case 2 3

<3,->

a'1

b'1
b'2

inst2

inst2
inst3

inst1
inst2

inst1

inst2

a'2

c'1

inst2

inst1
inst2

inst3

inst1

inst1

inst1
inst1

inst1

1

s2

<1,2>

2nd test case 2 3

b'1inst2

c'1inst2 inst1

t2
<3,->

refine

refine

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 5: Selective pruning strategy.

search space. If a partially symbolic candidate is
proved to be infeasible, the sub-tree rooted in this
candidate can be pruned.

The key idea of proving a candidate is infeasi-
ble is to check whether there is a conflict between
the specification and the candidate. This work uses
dataflow analysis to search for conflicts. One ap-
proach is to assign the input a concrete value and
infer known bits in the output. A known bit is 0,
1, or unknown, which can be inferred by a forward
dataflow analysis. For example, if the specification
is 4x + 1 and the candidate is H ≪ 1, where H is
a Hole, and the input is specified as 1, we can figure
out one conflict is in the least significant bit between
the specification output (i.e., 1) and the candidate
(i.e., 0). There are other approaches in the paper,
such as specifying the input and inferring the output
range to find out a conflict.

2.3.3 Discussion

LENS is an efficient pruning algorithm for enu-
merative synthesis. However, it is not obvious
how to generalize LENS to support programs with
branches and utilize the safety guarantee required
by eBPF programs to prune the search space.

Using dataflow to prune the space of programs
is more suitable to the search space stored in a tree
structure, while an eBPF program is an instruction
sequence. It is an open question how to use dataflow

6



to refine the search space in eBPF synthesis.

2.4 Constraint-based synthesis

Constraint-based synthesis is to encode the candi-
date synthesis (Eq. (3)) into constraints and then
utilize an off-the-shelf SAT/SMT solver to solve
the constraints. SKETCH (§2.4.1) and Brahma
(§2.4.2) are constraint-based synthesizers utilizing
bit-vector theory.

2.4.1 SKETCH

SKETCH [14] is a synthesizer that takes the spec-
ification and a sketch (i.e., a partial program with
some holes) as inputs. Users can express their high-
level ideas in this partial program, leaving the tricky
parts (e.g., uncertain constants) as holes. SKETCH
then solves the holes or shows the sketch is buggy if
there is no solution.

SKETCH converts the synthesis of a program,
which translates m bits (input) to n bits(output),
into a Quantified Boolean Formula satisfiability
problem (QBF). Logically, the sketch S can be com-
pleted if there exists a control c (i.e., the concrete
values for holes) to make the sketch semantically
equivalent to the specification (i.e., if Eq. (8) is sat-
isfiable).

∃c ∈ {0, 1}k.∀x ∈ {0, 1}m.P (x) == S(x, c) (8)

where x is the input. We will use the following spec-
ification and the sketch as an example.

int16 spec(int16 x) {
return (x & 0xFFF0) << 4;

}
int16 p (int16 x) implements spec() {

return x << ??; // ?? is a hole
}

According to Eq. (8), the formula is

∃c ∈ {0, 1}16.∀x ∈ {0, 1}16.
(x & 0xFFF0) << 4 == x << c

A model called counterexample-guided induc-
tive synthesis (CEGIS) (§2.1) was proposed in
SKETCH to reduce the complexity of (Eq. (8)). In
the candidate synthesis stage, the synthesis solver is

utilized to figure out a control using the following
query (Eq. (9)).

∃c ∈ {0, 1}k.∀x ∈ tc.P (x) == S(x, c) (9)

where tc is the test cases. For the above example, if
the test cases contain 0x1234 and 0x1111, then the
formula is

∃c ∈ {0, 1}16. (x == 0x1234 ∨ x == 0x1111) ∧
(x & 0xFFF0) << 4 == x << c

2.4.2 Brahma

Brahma [4] uses constraint-based synthesis to solve
component-based problem: synthesize loop-free
programs using components from a library for a
specific functionality. Users specify the function-
alities of the desired program and the library com-
ponents through logic relations between inputs and
outputs. Any component in the library can only
be used at most once. The main contribution of
Brahma is a novel algorithm of generating the con-
straint in first-order logic and solving the constraint.

In the constraint generation phase, Brahma uti-
lizes variable location connections to connect the
components from the library:

∃L.∀I⃗ , O, T.

clib ∧ cconn(I⃗ , O, T, L) ∧ cwfp(L) =⇒ cspec(I⃗ , L)
(10)

1. I⃗ is the program input, O is the program out-
put.

2. T is the temporary variables in the programs.
3. L contains the location variables (program in-

put or line number) of inputs and output of
each component.

4. clib is the constraint of the relations of each
component’s inputs and output variables (Eq.
(11)).

clib =
∧
i

ci(I⃗i, Oi) (11)

where ci is the logic relation between compo-
nent inputs I⃗i and output Oi.

7



5. cconn is the constraint of the order of each com-
ponents in the program and the line location of
each component input (Eq. (12)).

cconn =
∧

x,y∈{I,O}∪T

(lx == ly =⇒ x == y)

(12)

6. cwfp is the constraint of a well-formed pro-
gram. It contains:
a. location range constraint: assume a pro-
gram has Nin input variables and Ninst in-
structions, component input location should be
in range [0,M − 1], output location in range
[Nin,M − 1], where M = Nin + Ninst, not-
ing that every program input is regarded as a
(pseudo) component output.
b. consistency constraint: every program in-
struction contains at most one component.
c. acyclicity constraint: every variable should
be initialized before use.

7. cspec is the desired relationship between pro-
gram input I⃗ and output O.

The above synthesis constraint (Eq. (10)) is a ∃∀
formula, which is hard to be solved in a reasonable
time. To solve this, Brahma relies on CEGIS (§2.1)
to utilize two SMT solvers (synthesis solver and ver-
ification solver). In the candidate synthesis stage,
Brahma tries to find a solution for L that works for
all test cases by an SMT solver.

2.4.3 Discussion

SKETCH and Brahma are two constraint-based
synthesizers. They are efficient in solving nontrivial
programs. There are four reasons why we don’t use
them to optimize eBPF programs.

1. Performance: neither of them can directly rea-
son about the performance of the program to
be synthesized.

2. Development efficiency: besides the specifica-
tion, both SKETCH and Brahma require users
to provide a partial program or a library.

3. Scalability of opcodes: the size of the
SKETCH constraint could potentially grow ex-
ponentially in the number of opcodes, while
eBPF supports more than 100 opcodes.

4. Opcode usage bounded: the library in Brahma
bounds the number of times the same opcode
can be used. It can easily be bounded for hard-
ware with resource limitations, while the same
opcode can be used as many times as users
want in an eBPF program. We can provide
Ninst (the maximum number of instructions in
a program) opcode copies in the library, but it
will make the synthesis space much larger.

2.5 Others

2.5.1 Equality saturation

Traditional compilers use peephole optimization
rules (e.g., optimizing x ∗ 0 to 0) to optimize pro-
grams. The optimizations are applied in sequence.
For example, in Fig. 6, a compiler produces a trans-
formation path a → b → c. However, the order of
optimizations to run can affect the qualify of gener-
ated programs. The fixed order may prevent com-
pilers from producing a better program (e.g., d in
Fig. 6).

Equality saturation [15] was designed to solve
this problem. It is an optimization technique which
intends to find the best program over a space of
programs semantically equivalent to the source pro-
gram (i.e., all programs in Fig. 6). The idea is
that the transformation from one program to another
program using an optimization rule does not change
the program input-output behavior, i.e., two pro-
grams are equal. If we can use optimization rules to
find out all equal programs of the source program,
the best program must be a program among these
programs.

Equality saturation first builds a space of equal
program by repeatedly running the following steps:
(a) stores the source program in the equal space, (b)
applies optimization rules to the program fragments
from the equal space, and (c) stores the new equal
versions in the existing equal space until it is sat-
urated (i.e., no more unexplored programs). Then,
equality saturation selects the best program among
these versions.

To make the optimization efficient and effective,
equality saturation utilizes an intermediate repre-

8



a
b

c

d

Figure 6: A space of equal programs. Each node is
a program, and each arrow is a transformation. a is
the source program. c is the program generated by
a traditional compiler. d is the best program.

sentation, Equivalence Program Expression Graph
(E-PEG), to encode multiple equivalent programs
into a single data structure. Fig. 7 shows an exam-
ple of how to utilize E-PEG to optimize a program.
Fig. 7(a) is the source program presented by Pro-
gram Expression Graph (PEG) where each node is
an operator, and the edges associated with a node
represents where the arguments come from for the
node’s operator. For this source program, we can
apply an optimization rule, i.e., x * 0 = 0, and then
the operator * and its affiliated arguments (b and
0) can be replaced by a single ‘0’. This optimiza-
tion is encoded with the source program as shown in
Fig. 7(b). Equality saturation uses a dashed edge to
connect * with 0, which represents the subprogram
leading by “*” can be replaced by “0” (i.e., replac-
ing b*0 by 0). Finally, based on the E-PEG, equality
saturation can use some searching algorithms to cal-
culate the optimal program, i.e., Fig. 7(c).

This approach eliminates the effect of apply-
ing optimizations in a different order, addressing
the phase-ordering problem. In addition, it allows
designing global profitability heuristics algorithm
without worrying about determining whether to ac-
cept an optimization which could affect future opti-
mizations.

2.5.2 STNG

STNG [6] utilizes program synthesis to lift sten-
cil computations from low-level Fortran code with
nested loops to a summary in high-level predicate

a := b * 0
a := a + c

*

b 0

c

+

0

①

②
*

b 0

c

+
①

②
0 c

+
①

a := 0 + c

(a) (b) (c)

Figure 7: An example of PEGs: (a) the source code
and its PEG, (b) the E-PEG, and (c) the optimized
code and its PEG, which results by choosing node 1
from (b).

language. Stencil computations are a class of algo-
rithms that update each element in a multidimen-
sional grid based on the values of the element’s
nearest-neighbors using a function (e.g., Fig. 8(b)).
The summary in STNG is a postcondition (Fig.
8(a)), i.e., a predicate that will be true after execut-
ing the stencil code. To ensure correctness, we need
to prove the Fortran code and the summary are se-
mantically equivalent, i.e., the stencil code is valid
with respect to the precondition and postcondition.

Since the stencil code has loops, one approach
for equivalence check requires using loop invariants
which in general is manually constructed to con-
struct a verification condition [16]. If the verifica-
tion condition (Eq. (13)) is true, it implies the sten-
cil code is equivalent to the postcondition.

V C(s, post, invariant) = ∀s.vc1 ∧ vc2 ∧ vc3
(13)

where s is the state of inputs, invariant is the loop
invariants, post is the postcondition to be verified.
vc1(Eq. (14)) is that if the precondtion is true, then
the loop invariant is also true.

pre(s) =⇒ invariant(s) (14)

vc2 (Eq. (15)) is that if the loop invariants is true and
the loop condition is true, then after updating state
by executing the loop body once, the loop invariants
is hold for the updated states.

invariant(s)∧cond(s) =⇒ invariant(body(s))
(15)

9



procedure sten(imin,imax,jmin,jmax,a,b) 
real (kind=8), dimension(imin:imax,jmin:jmax) :: a 
real (kind=8), dimension(imin:imax,jmin:jmax) :: b 
do j=jmin, jmax

t = b(imin, j) 
do i=imin+1, imax

q = b(i,j) 
a(i,j) = q + t 
t = q 

enddo
enddo

end procedure
(a)

post(a) ≡ ∀imin+1 ≤ i ≤ imax, jmin ≤ j ≤ jmax. 
a(i,j) = b(i-1,j) + b(i,j)

(b)
invariant(a, b, j) ≡ j ≤ jmax + 1 ∧

∀imin+1 ≤ i ≤ imax, jmin ≤ j’< j. 
a(i,j’) = b(i-1,j’) + b(i,j’)

(c)

Figure 8: An example of (a) Fortran code, (b) the
corresponding summary (i.e., postcondition) and (c)
loop invariants

vc3(Eq. (16)) is that if the loop invarian is true while
the loop condition is false, then the postcondition is
true.

invariant(s) ∧ ¬cond(s) =⇒ post(s) (16)

Fig. 9 is an example of how to construct V C. An
SMT solver is used for checking the satisfiability
of the verification condition formula V C. If it is
unsatisfiable, the postcondition is equivalent to the
stencil code. Otherwise, it is not equivalent.

The main challenge to prove the equivalence of
loops is how to get the loop invariants and post-
condition automatically, i.e., find out loop invariants
and postcondition such that the verification condi-
tion holds (Eq. (17)). (18)).

∃post, invariant.∀s.vc1 ∧ vc2 ∧ vc3. (17)

STNG utilizes synthesis with CEGIS (§2.1) model
to search for the loop invariants and postconditions.
In the synthesis stage, STNG synthesizes the loop
invariants and postcondition candidate passing test
cases, i.e., state of loop inputs (Eq. (18)).

∃post, invariant.∀s ∈ tc.vc1 ∧ vc2 ∧ vc3 (18)

x = c;
y = 0;
while (x > 0) {
x--;
y++;

}

(a) (b)

precondition x = c ∧ y = 0

loop invariant ∀ x ≥ 0. x + y = c

loop condition x > 0

postcondition y = c

Figure 9: An example of how to construct the veri-
fication condition: (a) the loop code; (b) the corre-
sponding precondition, loop invariant, loop condi-
tion, and postcondition.

where tc is the test cases. In the verification stage,
STNG uses an SMT solver to verify whether the
loop invariants and postcondition candidate satisfies
V C or not. If not, a counterexample will be added
into the test cases.

To efficiently synthesize the postcondition and
loop invariants, STNG utilizes several techniques to
narrow down the search space. We will introduce
inductive template generation and quantifier elimi-
nation with partial Skolemization.
Inductive template generation STNG analyses
the stencil code to infer the overall structure of the
stencil code and uses this structure as a constraint
on the postcondition and the loop invariants. This
approach has two steps.

1. Symbolic Execution: STNG sets loop bounds
and array sizes to small, random concrete val-
ues, and sets all other inputs such as array el-
ements to symbolic values. Then it interprets
the stencil code using symbolic execution. Fi-
nally, we will get output arrays where the value
of each element is a formula consisting of con-
crete and symbolic values. Taking Fig. 8 as an
example, the value of output a[2, 2] is a sym-
bolic formula b[1, 2] + b[2, 2], and the value of
a[3, 4] is b[2, 4] + b[3, 4].

2. Template Generation: Since the template
should capture all input-output behaviors,
STNG infers the template by searching for the
intersection (i.e., the common part) of all out-
put expressions. We denote each expression in
the symbolic representation of each output ar-
ray value by e, where if e is a non-terminal,
it is an operator op which consumes input ex-

10



pressions e1, e2, · · · en. The following is the
way to compute the intersection of two expres-
sions.

⊓(e1, e2) :=


e1 e1 = e2, leaf(e1)

(op{⊓(e1i, e2i)})i e1 = (op{e1i}i)
e2 = (op{e2i}i)

MakeHole(e1, e2) otherwise

where the expression leaf(e1) means e1 is a
leaf in the expression tree. For example, we
can compute the intersection of b[1, 2]+ b[2, 2]
and b[2, 4] + b[3, 4] as follows:

⊓ (b[1, 2] + b[2, 2], b[2, 4] + b[3, 4])

(apply ⊓ (e1, e2) = (op{⊓(e1i, e2i)})i)
= b[⊓(e11, e21)] + b[⊓(e12, e22)]
(apply ⊓ (e1, e2) = MakeHole(e1, e2))

= b[h1()] + b[h2()]

where e11 = 1, 2, e21 = 2, 4, e12 = 2, 2,
e22 = 3, 4, and h1(), h2() are two holes,
which need to be synthesized. This structure
b[h1()]+b[h2()] encodes that the each element
in the output array a is the sum of two distinct
elements in array b.

Quantifier elimination with partial Skolemiza-
tion This technique is used in the verification stage
to efficiently detect an incorrect candidate postcon-
dition and loop invariants and produces a counterex-
ample. As we discussed earlier, in the verifica-
tion stage, we need to check whether the candidate
postcondition and loop invariants satisfies the ver-
ification condition for all possible input states. To
simplify the discussion here, we only consider the
third verification condition (i.e., vc3 (Eq. (16))). If
we can find out an input state (i.e., counterexam-
ple) such that vc3 is invalid, we prove the candidate
postcondition and loop invariants is incorrect, i.e.,
∃s,¬(invariant(s) ∧ ¬cond(s) =⇒ post(s)),
which can be simplified to Eq. (19).

∃s, invariant(s) ∨ ¬cond(s) ∨ ¬post(s) (19)

However, the presence of the additional uni-
versal quantifier in the loop invariants makes
the verification formula (Eq. (19)) hard to

be solved by an SMT solver. For exam-
ple, in Fig. 8(c), inside the loop invariants,
invariant(a, b, j) = ∀i ∈ [imin + 1, imax].j′ ∈
[jmin, j).P (i, j′, j, jmax, a, b), where P is the re-
maining part in the invariant(a, b, j). The verifi-
cation formula is Eq. (21). If the candidate is incor-
rect, the formula is satisfiable.

∃a, b, j, imin, imax, jmin, jmax.

∀i ∈ [imin+ 1, imax], j′ ∈ [jmin, j).

P (i, j′, j, jmax, a, b)

(20)

Since there is a ∀, it is hard to be solved by an
SMT solver. One approach to address this issue is
utilizing Skolemization [17]: figure out a function
fi(imin, imax) and fj′(jmin, j) to replace i and
j′. Then Eq. (21) becomes

∃a, b, j, imin, imax, jmin, jmax.

P (fi, fj′ , j, jmax, a, b)
(21)

However, in general, it is hard to find out fi and fj′

that works for all possible values of i and j′. STNG
searches for a partial Skolem function fS(jmin, j)
working for some values of i and j with some con-
crete inputs to capture some incorrect loop invari-
ants and postconditions. For example, if we only
use two inputs, the first input is imin = 0, imax =
1, jmin = 2, j = 3, then i = 1, j′ = 2, the
second input is imin = 1, imax = 2, jmin =
3, j = 4, then i = 2, j′ = 3. Eq. (21) can be
simplified as ∃a, b, jmax.P (1, 2, 3, jmax, a, b) ∨
P (2, 3, 4, jmax, a, b).

3 Our work: K2

We design and implement K2 [18], a program-
synthesis-based compiler that automatically opti-
mizes BPF bytecode with formal correctness and
safety guarantees. K2 leverages STOKE framework
(§2.2.1) to satisfy the complex specification. The
cost function in K2 is a combination of correctness,
safety, and performance.

Our experiments show that K2 produces code
with 6–26% reduced size, 1.36–55.03% lower aver-
age packet-processing latency, and 0–4.75% higher

11



throughput (packets per second per core) relative
to the best clang-compiled program, across bench-
marks drawn from production systems.

K2 incorporates several domain-specific tech-
niques to make synthesis practical by accelerating
equivalence-checking of eBPF programs by 6 or-
ders of magnitude. In addition, we propose a way
to perform a safety check.

3.1 Fast equivalence check

To do the equivalence check, K2 encodes the pro-
gram’s behavior in first order logic and uses an off-
the-shelf SMT solver Z3 [3] to solve the following
query.

inputs to program 1 == inputs to program 2
∧ input-output behavior of program 1
∧ input-output behavior of program 2
⇒ outputs of program 1

!= outputs of program 2

The program behavior formalization includes arith-
metic and logic instructions, memory access, eBPF
maps, and helper functions.

The equivalence checking time is crucial since
the check is in the search loop. We develop two
domain-specific techniques to reduce the equiva-
lence checking time by 6 orders of magnitude to
make K2 capable of synthesizing programs from
real-world systems. The key idea of the techniques
is to simplify the equivalence-check formula.

The first method is to concretize the symbolic
variables. This can be achieved by a static analy-
sis throughout the eBPF program. For example, K2
can infer (a) the memory type, which can be stack,
packet, or map memory; (b) map type, i.e., which
map the instruction accesses; and (c) memory off-
set, e.g., the offset to the first element in the memory
such as stack[0].

Our second method, modular verification, does
an equivalence check of two windows (i.e., a small
sequence of instructions in the program) instead of
two entire programs. This method is efficient in
synthesizing large programs. K2 selects and opti-
mizes a window in the program at a time. K2 re-
peats the window optimization until we run out of
the compiler’s time budget, or we find that there

r1 = 0
r2 = 0

r0 = r3
return r0

r3 = r2

program 1

r1 = 0
r2 = 0

r0 = r3
return r0

r3 = r1

program 2
live variables into window:

r1 = 0, r2 = 0

simplify r3 = r2

window 1

r3 = r1

window 2

live variables out of window: r3postfix

prefix

Figure 10: An example of modular verification. We
can prove two windows are equivalent by inferring
r1 and r2 are assigned 0 from the prefix and two
windows only need to agree on r3 from the postfix.

is no improvement in each window from the last
search throughout the program. We will use Fig. 10
as an example to illustrate modular verification. In
Fig. 10, two programs are semantically equivalent.
Thus, the modular verification is supposed to prove
that the two windows are equal. To achieve this, K2
first infers the variables two windows need to agree
on. These variables are variables live out of win-
dows (i.e., r3) instead of all variables in the program
(i.e., r0 − r3). However, we discover if r2 ̸= r1,
two windows will produce different values for r3.
K2 addresses this by doing a static analysis to infer
the constraints of live variables into windows. Ac-
cording to the prefix, we can get the constraint that
r1 and r2 are assigned the same value 0. In sum-
mary, K2 uses the following modular equivalence
check query to verify whether two windows are se-
mantically equivalent.

live variables into window 1
== live variables into window 2
∧ input-output behavior of window 1
∧ input-output behavior of window 2
⇒ live variables out of window 1

!= live variables out of window 2

3.2 Safety check of eBPF programs

The safety of an eBPF program is checked by static
analysis, program interpreter, and first-order logic.
First, K2 does a static analysis to check whether a
program contains any unsafe instructions by infer-
ring the variable states. Second, K2 uses test cases
to interpret the program passing the static analy-
sis, to check whether there is any unsafe instruc-
tion. Finally, for the program passing the test cases,

12



K2 does a formal safety check by encoding the pro-
gram behavior and the safety check in a first-order
logic formula and leveraging Z3 solver to check
whether the formula is unsatisfiable. If it is satis-
fiable, K2 will add the counterexample to the test
cases. Currently, K2 supports control flow, memory
accesses within bounds, memory access alignment,
and checker-specific constraints (e.g., r5 − r9 are
unreadable after a help function call).

4 Conclusion

In this report, we first explained the program syn-
thesis problem and introduced a typical synthesis
model CEGIS. Then we described and discussed the
previous program synthesis work: stochastic syn-
thesis, enumerative synthesis, constraint-based syn-
thesis, and other program synthesis works. Finally,
we presented K2, a compiler for optimizing eBPF
programs using program synthesis. Based on pre-
vious work CEGIS and the STOKE framework, we
designed several domain-specific techniques to ef-
ficiently synthesize eBPF programs satisfying com-
plex specification. K2 can produce safe and opti-
mized drop-in replacements for existing eBPF pro-
grams.

References

[1] ebpf. https://www.kernel.org/
doc/Documentation/networking/
filter.txt.

[2] Berkeley Churchill, Rahul Sharma,
JF Bastien, and Alex Aiken. Sound loop
superoptimization for google native client.
ACM SIGPLAN Notices, 52(4):313–326,
2017.

[3] Leonardo de Moura and Nikolaj Bjørner. Z3:
An efficient smt solver. In C. R. Ramakrish-
nan and Jakob Rehof, editors, Tools and Al-
gorithms for the Construction and Analysis of
Systems, pages 337–340, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[4] Sumit Gulwani, Susmit Jha, Ashish Tiwari,
and Ramarathnam Venkatesan. Synthesis of
loop-free programs. ACM SIGPLAN Notices,
46(6):62–73, 2011.

[5] Toke Høiland-Jørgensen, Jesper Dangaard
Brouer, Daniel Borkmann, John Fastabend,
Tom Herbert, David Ahern, and David Miller.
The express data path: Fast programmable
packet processing in the operating system ker-
nel. In Proceedings of the 14th international
conference on emerging networking experi-
ments and technologies, pages 54–66, 2018.

[6] Shoaib Kamil, Alvin Cheung, Shachar
Itzhaky, and Armando Solar-Lezama. Ver-
ified lifting of stencil computations. ACM
SIGPLAN Notices, 51(6):711–726, 2016.

[7] Henry Massalin. Superoptimizer: a look at the
smallest program. ACM SIGARCH Computer
Architecture News, 15(5):122–126, 1987.

[8] Steven McCanne and Van Jacobson. The bsd
packet filter: A new architecture for user-
level packet capture. In Proceedings of the
USENIX Winter 1993 Conference Proceedings
on USENIX Winter 1993 Conference Proceed-
ings, USENIX’93, pages 2–2, Berkeley, CA,
USA, 1993. USENIX Association.

[9] Manasij Mukherjee, Pranav Kant, Zhengyang
Liu, and John Regehr. Dataflow-based pruning
for speeding up superoptimization. Proceed-
ings of the ACM on Programming Languages,
4(OOPSLA):1–24, 2020.

[10] Phitchaya Mangpo Phothilimthana, Aditya
Thakur, Rastislav Bodik, and Dinakar Dhur-
jati. Scaling up superoptimization. In
Proceedings of the Twenty-First International
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems,
pages 297–310, 2016.

[11] Raimondas Sasnauskas, Yang Chen, Peter
Collingbourne, Jeroen Ketema, Gratian Lup,
Jubi Taneja, and John Regehr. Souper: A

13

https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt


synthesizing superoptimizer. arXiv preprint
arXiv:1711.04422, 2017.

[12] Eric Schkufza, Rahul Sharma, and Alex
Aiken. Stochastic superoptimization. ACM
SIGARCH Computer Architecture News,
41(1):305–316, 2013.

[13] Rahul Sharma, Eric Schkufza, Berkeley
Churchill, and Alex Aiken. Data-driven equiv-
alence checking. In Proceedings of the 2013
ACM SIGPLAN international conference on
Object oriented programming systems lan-
guages & applications, pages 391–406, 2013.

[14] Armando Solar-Lezama, Liviu Tancau,
Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. Combinatorial sketching for finite
programs. In Proceedings of the 12th inter-
national conference on Architectural support
for programming languages and operating
systems, pages 404–415, 2006.

[15] Ross Tate, Michael Stepp, Zachary Tatlock,
and Sorin Lerner. Equality saturation: a new
approach to optimization. In Proceedings of
the 36th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming lan-
guages, pages 264–276, 2009.

[16] Glynn Winskel. The formal semantics of pro-
gramming languages: an introduction. MIT
press, 1993.

[17] Christoph M Wintersteiger, Youssef Hamadi,
and Leonardo De Moura. Efficiently solving
quantified bit-vector formulas. Formal Meth-
ods in System Design, 42(1):3–23, 2013.

[18] Qiongwen Xu, Michael D Wong, Tanvi Wa-
gle, Srinivas Narayana, and Anirudh Sivara-
man. Synthesizing safe and efficient kernel
extensions for packet processing. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Con-
ference, pages 50–64, 2021.

14


	Problem statement
	Related work
	Overview
	Stochastic synthesis
	STOKE
	Synthesizing programs with loops
	Discussion

	Enumerative synthesis
	LENS
	Dataflow-based pruning
	Discussion

	Constraint-based synthesis
	SKETCH
	Brahma
	Discussion

	Others
	Equality saturation
	STNG


	Our work: K2
	Fast equivalence check
	Safety check of eBPF programs

	Conclusion

